Cranial Kinesis in Lepidosaurs: Skulls in Motion
نویسنده
چکیده
This chapter reviews various aspects of cranial kinesis, or the presence of moveable joints within the cranium, with a concentration on lepidosaurs. Previous studies tend to focus on morphological correlates of cranial kinesis, without taking into account experimental evidence supporting or refuting the presence of the various forms of cranial kinesis in these taxa. By reviewing experimental and anatomical evidence, the validity of putative functional hypotheses for cranial kinesis in lepidosaurs is addressed. These data are also considered with respect to phylogeny, as such an approach is potentially revealing regarding the development of various forms of cranial kinesis from an evolutionary perspective. While existing evidence does not allow for events leading to the origin of cranial kinesis in lepidosaurs to be clearly understood at the present time, the potential role of exaptation in its development for specific groups (i.e., cordylids, gekkonids, varanids) is considered here. Directions for further research include greater understanding of the distribution of cranial kinesis in lepidosaurs, investigation of intraspecific variation of this feature (with a focus on ontogenetic factors and prey properties as variables which may influence the presence of kinesis), and continued study of the relationship between experimentally proven observation of cranial kinesis and cranial morphology.
منابع مشابه
Potential for intracranial movements in pterosaurs.
Based on comparative anatomical, morphological, and phylogenetic considerations the potential of pterosaurs for cranial kinesis is assessed. Our investigation shows that whereas skeletally mature derived pterodactyloids have completely fused, rigid and doubtlessly akinetic skulls, skeletally immature derived pterodactyloids and more basal pterosaurs possess key features in the morphology of the...
متن کاملThree-dimensional kinematics of skeletal elements in avian prokinetic and rhynchokinetic skulls determined by Roentgen stereophotogrammetry.
Several different types of cranial kinesis are present within modern birds, enabling them to move (part of) the upper bill relative to the braincase. This movement of the upper bill results from movement of the quadrate and the pterygoid-palatine complex (PPC). The taxon Palaeognathae is characterised by a very distinct PPC and a special type of cranial kinesis (central kinesis) that is very di...
متن کاملThe evolution of cranial design and performance in squamates: Consequences of skull-bone reduction on feeding behavior.
The evolution of cranial design in lepidosaurians is characterized by a general trend toward the loss of cranial elements. The evolution of relatively lighter skulls in squamates appears tightly coupled to a reduction in relative mass of the jaw adductor, implying functional consequences for bite force and feeding behavior. Interestingly, among squamates the postorbital bar was reduced or lost ...
متن کاملArticle Cranial Kinesis in Dinosaurs: Intracranial Joints, Protractor Muscles, and Their Significance for Cranial Evolution and Function in Diapsids
Different forms of intracranial mobility, including streptostyly, pleurokinesis, and prokinesis, have been postulated for many dinosaurs. The basis for inferring kinesis typically has included the presence of presumably synovial intracranial joints (otic and basal joints) and various ad hoc ‘sliding joints’ (many without modern parallels), whereas the protractor musculature that would have powe...
متن کاملCranial kinesis in geckoes: functional implications.
Although it is generally assumed that cranial kinesis is a plesiomorphic characteristic in squamates, experimental data tend to contradict this hypothesis. In particular, coupled kinesis (i.e. streptostyly and mesokinesis) presumably arose independently in only a limited number of highly specialised groups. In this study, we investigated cranial kinesis in one of the most specialised of these g...
متن کامل